FINDING THE EQUATIONS OF LINES

An equation of a line written in slope y-intercept form: y = wy + b

To find the equation of a line you need two things: 1) _____ and 2) ____ and 2) ____ and 2)

METHOD 1 (Given Slope and y-intercept)

Substitute the slope and y-intercept variables into the equation y = mx + b

Ex 1: Slope
$$=$$
 $\frac{1}{2}$, y-intercept $=$ $\frac{1}{5}$

Ex 2:
$$m = \frac{4}{7}$$
, $b = -3$

$$y = \frac{4}{7}x - 3$$

METHOD 2 (Given a Graph)

Find the y-intercept. Find the closest coordinate point.

Calculate the slope using $m = \frac{rise}{}$

Ex 3: Find the equation of the line shown in the graph.

METHOD 3 (Given two points and using a Graph)

Plot the two coordinates on the graph.

Draw a line between the two points and across the y-axis (if it does not already cross). Note the y-intercept.

rise Calculate the slope between the two points using m =

Ex 4: Find the equation of the line passing through points (3, 1) and (6, 3)

METHOD 4 (Given slope and one point, no graphing)

Calculate y-intercept using the slope and the point given. Substitute all values into y = mx + b and solve to get b. Rewrite the equation using values for **m** and **b** only.

Ex 5: Slope = 4, passing through point (3,2)

$$y = mx + b$$

 $2 = 4(3) + b$
 $2 = 12 + b$
 $2 - 12 = b$
 $|-10 = b|$

y = 4>c-10

Ex 6: Slope = -3 passing through point (1,4) m = -3

$$y = mx + b$$
 $H = -3(1) + b$
 $H = -3 + b$
 $H = -3 + b$
 $H = -3 + b$

y=-3x+7

Ex 7: Find the equation of a line with a slope of $-\frac{1}{2}$ passing through the point (1,4).

$$y = m \times + b$$
 $4 = -\frac{1}{2}(1) + b$
 $4 = -\frac{1}{2} + b$
 $8 = -1 + 2b$
 $8 + 1 = 2b$
 $9 = 2b$

 $y = -\frac{1}{2}x + \frac{9}{2}$